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50937 Köln, Germany

Received 24 April 2008, in final form 1 June 2008
Published 24 June 2008
Online at stacks.iop.org/JPhysCM/20/285229

Abstract
In experiments, the ternary Eu pnictide EuRh2P2 shows an unusual coexistence of a
non-integral Eu valence of about 2.2 and a rather high Néel temperature of 50 K. In this paper,
we present a model which explains the non-integral Eu valence via covalent bonding of the Eu
4f-orbitals to P2 molecular orbitals. In contrast to intermediate valence models where the
hybridization with delocalized conduction band electrons is known to suppress magnetic
ordering temperatures to at most a few kelvin, covalent hybridization to the localized P2 orbitals
avoids this suppression. Using perturbation theory we calculate the valence, the
high-temperature susceptibility, the Eu single-ion anisotropy and the superexchange couplings
of nearest and next-nearest neighbouring Eu ions. The model predicts a tetragonal anisotropy of
the Curie constants. We suggest an experimental investigation of this anisotropy using single
crystals. From experimental values of the valence and the two Curie constants, the three free
parameters of our model can be determined.

1. Introduction

Non-integral valence, intermediate valence, and
magnetic order

A general question of interest is how a non-integral valence of
localized ions in a solid influences the possibility of magnetic
order. Concerning this subject, an earlier paper reported the
anomalous valence state of Eu in EuRh2P2 [1]. EuRh2P2

was characterized as showing intermediate-valent and probably
also covalent properties. The coexistence of a non-integral Eu
valence of 2.2 and antiferromagnetic order up to 50 K was
reported.

Simply given, a non-integral valence means that the
mean total occupation number of the ionic electronic levels
is non-integral. This might have several physical reasons.
In particular, intermediate valence is the hybridization of
localized ionic states with the strongly delocalized conduction
band. It is experimentally evident and theoretically well
understood that there is a strong competition between
intermediate valence and magnetic order. Intermediate valence
is known to suppress magnetic ordering temperatures typically
to at most a few K. As an experimental example, TmSe
is intermediate-valent and has a Néel temperature below
3.5 K [2].

A detailed theoretical approach to intermediate valence is
the extended s–f model [3]. Using this model a similarity to the

Kondo effect is shown: broadly speaking, information about
the electron spin is washed out by the delocalization of the
conduction band states. The extended s–f model allows one to
take a ferromagnetic exchange between ionic f and conducting
s states into account, which is typical for intermediate-valent
Eu ions. Hence, it is more realistic than an Anderson model,
which always implies an antiferromagnetic s–f coupling [4].

In agreement with experiment, the extended s–f model
also explains why the magnetic ordering temperature of
an intermediate-valent system is enhanced drastically by
mechanical or chemical high pressure. In addition, a given
intermediate valence is pressure-sensitive itself because the
energy levels of the localized states can be pressed towards
the conduction band. These aspects are not too important
for the present paper because we will concentrate neither on
intermediate valence nor on anomalous pressure.

If a non-integral valence is caused by covalence, no
strongly delocalized states are involved in the underlying
hybridization. Hence, a characteristically different approach
will be required to understand such systems.

The interpretation of EuRh2P2 is insufficient so far. On the
one hand, if EuRh2P2 was a system in which a Eu intermediate
valence of 2.2 and magnetic order coexist up to 50 K without
any restrictions, this would be most surprising. Not only is
such behaviour experimentally unusual but also theoretically
not understood, because in this case the ordering temperature
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Figure 1. Crystal structure of EuRh2P2.

is an order of magnitude higher than for typically realistic
parameter sets of the extended s–f model [3]. Even for
extreme choices of the model parameters (in case of a Eu
intermediate valence of 2.2), an upper boundary of about 15 K
for the ordering temperature is estimated. A new concept
of intermediate valence would have to be found to explain
the experiment. On the other hand, no detailed model is
available to investigate the counter-perspective, the influence
of the covalence on the magnetism of EuRh2P2.

In the following, we will motivate the use of a covalent
scenario instead of intermediate valence as the starting point
for the investigation of EuRh2P2. This is in contrast to
former publications [1, 5–7] and also refers to unpublished
experimental material [8–11].

The covalence of EuRh2P2

We take into account the following experiments on EuRh2P2:
measurements of the magnetic susceptibility [1, 9], of the
crystal structure [5, 7, 11], L III x-ray absorption [8], and
Mössbauer spectroscopy [10].

The properties of EuRh2P2 can be unravelled by studying
the influences of temperature and doping, especially with As.
Depending on these two parameters, in experiments a structural
phase transition of first order is observed whilst the lattice type,
a body-centred tetragonal ThCr2Si2 structure (figure 1), does
not change.

The structural phases α and β differ by a strongly
anisotropic jump of the lattice parameters and in the electronic
bonding conditions. This leads in the β phase to a non-
integral Eu valence of 2.2. The lattice cells show a slight
elongation in the square plane but a considerable compression
along the tetragonal axis [5, 7, 11] compared to the α phase,
which contains divalent Eu ions. In both phases, the valence is
homogeneous, i.e., all Eu ions are equivalent.

In the β modification two nearest neighbouring P atoms
form a single molecular bond [7, 11]—oriented along the
tetragonal axis—which does not appear in the α phase. This
corresponds to a charge transfer from the phosphorus to the

Figure 2. Phase diagram of EuRh2(Asx P1−x)2 [9]. The mid-grey
sector corresponds to a coexistence due to hysteresis.

conduction band, which leaves holes in P2 molecular states.
These are available for occupation by one fluctuating Eu
electron each. In this way, in the β phase there is a covalent
hybridization between the magnetic Eu ions and P2 molecules.
The Rh ions do not participate in the magnetic properties of
EuRh2P2.

Both phases α and β exhibit a magnetic phase transition
from para- to antiferromagnetism at a Néel temperature TN

(phase diagram: figure 2). With decreasing As doping TN drops
somewhat at the α–β phase boundary but does not change its
order of magnitude. According to the extended s–f model this
effect of the valence transition on the ordering temperature is
too small to be consistent with intermediate valence.

The valence measurements on EuRh2P2, in particular
L III x-ray absorption and Mössbauer spectroscopy, cannot
distinguish between a non-integral valence of covalent and
intermediate-valent origin. The reduced magnetic moment of
the β phase compared to the divalent Eu moment of the α phase
does not clarify the nature of the non-integral valence either.
Furthermore, the valence cannot be derived from the magnetic
Eu moment alone because in the non-intermediate-valent case
a non-trivial contribution by the P2 states must be considered.
This quantity is unknown.

The covalent bonding scenario between Eu and P2 states
pursued in the present paper was derived in [11] from bonding
lengths and is supported by further aspects. In particular, the
pressure dependence [10] of the valence, which we express
as the deviation �W from the divalent state, leads to the
conclusion that the intermediate-valent part of the total Eu
valence amounts to at most

�W |iv ≈ 0.05. (1)

This is the precision with which the Eu valence is
determined by Mössbauer spectroscopy [10]. Reference [10]
states no intermediate valence within this precision because in
Mössbauer spectroscopy the Eu valence does not change over
the range between ambient pressure and 5 GPa. This is the
expectation in the absence of a conduction band hybridization.
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As the results of L III x-ray absorption [8] may be
influenced by final-state effects, we assume an error bar for the
non-integral Eu valence of the β phase including intermediate
valence as well as covalence and estimate the valence shift as:

�W = 0.20 ± 0.05. (2)

We will not carry out an error calculation in closed
form but will select several discrete values for parameters
of the model, which will be constituted neglecting �W |iv.
Furthermore, we ignore the weak temperature dependence of
the valence which is considerably less significant in the β phase
than the precision of 0.05 [10].

The mechanism and the geometric structure of magnetic
ordering in EuRh2P2 are almost completely unknown. Exper-
imentally, antiferromagnetism below TN has been concluded,
as well as the existence of—unspecified—ferromagnetic cou-
plings because of an anomalous paramagnetic Curie tempera-
ture [9]. In addition, the importance of a phosphorus-mediated
superexchange between the Eu ions has been shown qualita-
tively via the sensitivity of the Mössbauer magnetic hyperfine
field (and TN) to pressure [10], which is not observed in the
reference system EuRh2As2.

We conclude that the covalence of EuRh2P2 has to be
significant because the intermediate-valent part is small and the
reduced magnetic moment, the existence of the superexchange,
and the bonding scenario have been shown to be mutually
consistent with the covalence.

Any possibility other than covalence or intermediate
valence which can cause a measured non-integral valence
should be excluded in EuRh2P2: In Eu(Pd0,7Au0,3)2Si2 similar
L III x-ray absorption and Mössbauer results in spite of a
divalent magnetic Eu moment are found at ambient pressure
and are explained finally by an anomalous spatial extension
of the 4f shell, whereas the system becomes intermediate-
valent under high pressure [12]. In contrast to EuRh2P2, in
Eu(Pd0,7Au0,3)2Si2 no covalent bonding partners are available
for the Eu ions.

Under pressure beyond 5 GPa, intermediate valence in
EuRh2P2 acquires, at least qualitatively, the same relevance
as the covalence but remains less important than the latter
at ambient pressure [10]. The corresponding characteristic
decrease of TN under increasing pressure is understood by the
extended s–f model.

Band structure calculations of EuRh2P2 have only
been performed for the integral-valent α (high-temperature)
phase [6].

The magnetic ordering of EuRh2P2 is caused both by
super and indirect exchange. The latter aspect follows because
the reference system EuRh2As2 exhibits almost the same TN

(48 K) but neither superexchange [10] nor an anomaly of the
paramagnetic Curie temperature [9].

In order to treat the covalence effects of EuRh2P2

perturbatively from divalent ionic ground states, we view the
crystal as built by inactive two-dimensional metallic Rh planes
and by quasi-two-dimensional insulating EuP2 planes. The
covalent hybridization in these planes is much more important
than the one between different EuP2 planes. This is concluded
from the Eu–P distances, which in the β phase near the phase

boundary are: 3.88 Å between the planes and 3.10 Å in the
plane.

As the starting point we view the properties of an arbitrary
single Eu ion in interaction with the four neighbouring P2

molecular ions which form a tetragonal cage around it. This
interaction describes the high-temperature paramagnetism of
the crystal to leading order. We begin with three unknown
model parameters and reduce their number finally to one after
calculating two quantities for which experimental values are
available: the valence and the paramagnetic susceptibility
(as an average over the three spatial directions). We also
calculate the single-ion anisotropies of the Eu ions, which are
experimentally unknown.

Using the same model parameters, since thermal
expansion is very small in the temperature range between 0 and
about 400 K [7], we calculate the superexchange parameters
between nearest and next-nearest neighbouring Eu ions.

2. Model

The α phase of EuRh2P2 has got the formal valences [11]:

Eu2+(
Rh2+)

2

(
P3−)

2︸ ︷︷ ︸
full 3p shell

. (3)

This corresponds to the divalent ground state of a Eu ion:

4f7, S = 7
2 , L = 0, J = S. (4)

In the covalent β phase there is a fluctuation between the
formal valences [11]:

Eu2+(
Rh+)

2

(
P2

)4−
︸ ︷︷ ︸

1 hole per
P core

←→ Eu3+(
Rh+)

2

(
P2

)5−
︸ ︷︷ ︸

1 hole per
molecule ion

. (5)

The hybridization of the Eu ions is described perturba-
tively—starting from the divalent configuration—via a
quantum mechanical admixture of trivalent states:

4f6, S = 3, L = 3, J = 0 . . . 6. (6)

Hund’s rule correlations are taken fully into account. We
use a Landé approximation for the energies EJ of the Eu3+
ground state J = 0 and the low excitations J > 0:

EJ = �E [1 + X J (J + 1)]. (7)

EJ=0 is shifted by an unknown charge transfer energy �E
with respect to the divalent ground state, which is the zero point
in our calculation (E2+ = 0). The intraionic spin–orbit part of
the levels EJ is given by

X = ξ

42�E
, ξ = 7960 K (8)

which was fitted to optical measurements [13] by a least
squares fit. ξ is the spin–orbit coupling parameter (Hso = ξLS
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is the Hamiltonian of the spin–orbit coupling for a single
Eu ion).

After an electron hops from the Eu ion to a phosphorus
ion, it occupies an antibonding molecular orbital (MO) state,
which is considered as a linear combination of two 3pz atomic
orbitals due to the MO method and which is odd under a
reflection with respect to the a2 (xy) plane. The bonding 3pz

MOs are always filled.
As the perturbation term which expresses the covalent

hybridization we introduce a hopping operator between a Eu
ion and four neighbouring P2 molecular ions:

V =
∑

k=1,2,3,4
σ=↑, ↓

[
t0 f †

0σ + (−1)k t2
(

f †
−2σ + f †

2σ

)]
p(k)

σ + H.c. (9)

p and f denote the annihilators corresponding to the
single-particle states. Because of symmetries (time reversal of
the crystal Hamiltonian, reflection with respect to xy and xz
plane) contributions due to hopping amplitudes tm for magnetic
quantum numbers m �= 0,±2 are excluded and we have t−2 =
t2. p(k)

σ relates to the antibonding MO of the kth neighbour.
There are three unknown model parameters: X , t0, and t2. The
hopping amplitudes can be chosen real.

We calculate the matrix elements of effective operators via
standard perturbation theory for a degenerate system and to
leading order in the perturbation. We use a formulation due
to Takahashi [14] involving a unitary transformation � which
maps the perturbed problem onto the unperturbed ground-state
space. � is given as a power series in terms of the unperturbed
Hamiltonian—corresponding here to the energies E2+ = 0 and
EJ —and the perturbation operator V . Any operator A in the
Hilbert space of the perturbed states is treated as an effective
operator a = �† A � in the ground-state space.

In the calculation, the matrix elements of the effective
operators are expressed in terms of the matrix elements of the f
creators (which appear in the perturbation term V ) between the
correlated many-body states of the Eu2+ and Eu3+ ions. The
matrix elements are evaluated via Clebsch–Gordan coefficients
and the Wigner–Eckart theorem. Explicitly, using Clebsch–
Gordan coefficients the f creators are transformed from the
mσ to the j jz basis:

f †
mσ =

∑

j= 5
2 , 7

2
jz=m+σ

〈3m 1
2σ

∣
∣ j jz〉 f †

j jz
. (10)

The Wigner–Eckart theorem gives:

〈 7
2 M

∣
∣ f †

j jz

∣
∣J Jz〉 = ∥

∥ f
∥
∥

j J
〈J Jz j jz

∣
∣ 7

2 M〉, (11)

where | 7
2 M〉 is a state of the Eu2+ configuration (M =

−7/2 . . . 7/2), |J Jz〉 is a state of the Eu3+ configuration
(J = 0 . . . 6, Jz = −J . . . J ), and ‖ f ‖ j J is a reduced matrix
element.

3. Single-ion effects

We calculate the matrix elements of the effective operators of
the valence and the magnetization due to hopping of second

order in V , which is the leading order of the hybridization for
the single-ion effects. For this calculation it is sufficient to
apply the unitary operator � to first order.

We have calculated the effective single-ion Hamiltonian
to second order in V . According to this calculation, which we
do not present in detail, the octets of the unperturbed Eu2+ ions
split into four Kramers doublets which, however, remain quasi-
degenerate, i.e. the splitting of these doublets is very small
compared to the temperature. Hence, we will use the average
energy of the Kramers doublets for thermodynamic averaging.

Effective valence

The covalent admixture of Eu3+ states shifts the valence from
2 to a larger value. In order to calculate the model valence we
use the valence operator:

W = 3 − P0. (12)

P0 is the projector onto the unperturbed ground-state
space [14]. In the framework of our perturbation method [14]
we use the effective valence operator w = �†W � to second
order in V . Thermodynamic averaging due to the mean
eigenvalues of the effective Hamiltonian of second order gives
the mean valence:

〈W 〉 = 1
8 tr w. (13)

Our calculation of the deviation �W = 〈W 〉 − 2 from the
divalent Eu configuration caused by the covalence gives the
result:

�W = 4

49

t2
0 + 2 t2

2

(�E)2

6∑

J=0

1 + 2J

[1 + J (J + 1)X ]2
. (14)

Because of the uncertainty of the precise value of �W
(see (1) and (2)) we carry out the model calculation using the
experimental values

�W = 0.2 and �W = 0.15. (15)

Fixing the value of �W accordingly reduces the number
of unknown model parameters from three to two. For
convenience, we define

t =
√

t2
0 + 2 t2

2 (16)

as the total hopping amplitude. Because of t−2 = t2, t2

is proportional to the total hopping probability of all single-
particle Eu states m involved in the hopping. In view of
equation (14), t can be considered a function of X at a given
value of �W .

In order to ensure that the second-order calculation be
consistent, (t/�E)2 must be considerably lower than 1. This
will be the case for our choices of the model parameters.
Higher orders will be suppressed by an additional factor of
(t/�E)2.

4
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Effective Curie susceptibility

Due to the covalent admixture of the Eu3+ configuration
the paramagnetic susceptibility of EuRh2P2 can be expected
to become anisotropic. According to the space group the
susceptibility tensor has tetragonal symmetry. In the high-
temperature regime we are considering here the susceptibility
is Curie-like. In the limit of small differences between
the energies of the Kramers doublets, the paramagnetic
susceptibility of the system per space direction i = x, y, z is
given by:

χii = 1

kT
Cii , Cii = 1

8

∑

M M ′

∣∣
∣
∣

〈
7

2
M |mi | 7

2
M ′

〉∣∣
∣
∣

2

, (17)

following from the standard formula for the Curie susceptibil-
ity of single ions [15]. The Curie constants Cii of second order
depend on the effective magnetic moment mi = �† Mi � of
second order in V , where Mi = Ji + Si denotes the untrans-
formed moment. Experimentally, the Curie susceptibility has
been measured on polycrystals [1, 9]. This corresponds to the
spatial average C = (2 Cxx + Czz)/3, and we define

�Cii = Cii − C (implying �Cxx =− 1
2�Czz). (18)

The resulting model Curie constants are (in units of μ2
B):

C = 21 − 9

49

(
t

�E

)2 [
16 + 1

1 + 2X
+ 5

1 + 6X

+ 14

1 + 12X
+ 30

1 + 20X
+ 55

1 + 30X
+ 91

1 + 42X

+ 45

(1 + 2X)2
+ 65

(1 + 6X)2
+ 70

(1 + 12X)2

+ 54

(1 + 20X)2
+ 11

(1 + 30X)2
− 65

(1 + 42X)2

]
,

�Czz = 6

49

(
t0

�E

)2 [
24 + 6

1 + 2X
+ 26

1 + 6X
+ 56

1 + 12X

+ 72

1 + 20X
+ 22

1 + 30X
− 182

1 + 42X

+ 63

(1 + 2X)2
+ 77

(1 + 6X)2
+ 56

(1 + 12X)2

− 77

(1 + 30X)2
− 143

(1 + 42X)2

]
.

(19)

In this calculation we have included (in contrast to an
intermediate-valent hybridization) non-trivial contributions to
the Curie susceptibility from the localized pz orbitals:

C = CEu + Cpz , Cpz = 6�W. (20)

As t/�E can be expressed via X (see equation (14)),
using equations (14) and (19) we can fix t and X (and
consequently, �E) from the experimental values of �W and
C . Similarly to the valence, we choose two experimental
values of the Curie constants of the polycrystalline samples [9]:

C = 17.2 and C = 17.6. (21)

Table 1. Selected sets of model parameters and maximum Curie
anisotropy.

�W C X �E t Cmax
zz /Cmin

xx

0.2 17.2 0.00181 104 687 K 24 402 K 1.018
0.15 17.6 0.009 89 19 163 K 4505 K 1.065
0.15 17.2 0.0177 11 083 K 2915 K 1.109

These values refer to two different samples. The latter value
of C is inconsistent with �W = 0.2 according to the model.
Probably this is not an objection to the model but a further
hint at �W < 0.2 as far as the valence shift is caused by
the covalence. We fix three sets of model parameters X (or
�E) and t according to table 1. Notice that the perturbation
parameter (t/�E)2 is considerably lower than 1 (we have
0.05 < (t/�E)2 < 0.07 for all three parameter sets), which
shows that the low-order calculation is sufficient. The first
parameter set is the least realistic one because t is extremely
high.

Table 1 shows that for a given value of �W , the total
hopping amplitude t is very sensitive to the value of C . Hence,
it is important to take into account the contributions Cpz

from the P2 molecules to the paramagnetic susceptibility, see
equation (20).

For convenience we define the relative hopping amplitude
concerning m = 0 single-particle states:

τ = t0
t
. (22)

After t and X (and �E) have been fixed using the
experimental values of �W and C , τ is the only unknown
parameter of the model. Notice that the anisotropy of the Curie
constant, �Czz , is proportional to τ 2 (see equation (19)), i.e.,
this anisotropy is solely caused by the covalent hybridization
which involves m = 0 single-particle states of the Eu-f shell.

Our model characterizes intervals (upper bounds) for the
anisotropy of the Curie constant. Czz/Cxx − 1(� 0) is
almost exactly proportional to τ 2. Table 1 lists the maximum
anisotropy due to:

Cmax
zz = Czz |τ=1, Cmin

xx = Cxx |τ=1. (23)

Single-ion anisotropy

The effective Hamiltonian to second order in the perturbation
V gives rise to a single-ion anisotropy of the Eu ion:

hsi = μσ 2
z . (24)

Here and in the following we normalize every spin operator
with respect to 1 as σ• = 2S•/7. The single-ion anisotropy
parameter μ is given in table 2. The anisotropy changes sign
for small values of τ . We will come back to the single-ion
anisotropy in the next section when we discuss various effects
on the magnetic ordering temperature, which are present in
EuRh2P2.

5
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Figure 3. Quasi-two-dimensional EuP2 plane with a superexchange
cluster of nearest neighbouring Eu ions and their common
P2 molecular neighbours.

Table 2. Single-ion anisotropy parameter.

X μ (K)

0.001 81 14 τ 2

0.009 89 −1 + 51 τ 2

0.0177 −4 + 87 τ 2

4. The coupling of neighbouring Eu spins

Nearest neighbours

The superexchange dynamics of nearest neighbouring Eu spins
in EuRh2P2 is described to leading order by processes of
fourth order in the Eu–P2 hopping within a cluster as shown
in figure 3.

In treating the intermediate states of the perturbation
series, we use the same Landé levels as in section 2 and ignore
Coulomb repulsion within the P2 molecules in the case of
doubly occupied P2 orbitals. In analogy to equation (9), the
hybridization operator is given by:

V =
∑

i,k=1,2
σ=↑,↓

{
t0 f (i)†

0σ + (−1)k t2
[

f (i)†
−2σ + f (i)†

2σ

]}
p(k)

σ + H.c. (25)

i is a site index for the Eu ions. We calculate the effective
superexchange Hamiltonian of fourth order in V which scales
with t4(�E)−3 and describes any superexchange in the crystal
to leading order. Superexchange processes between nearest
neighbouring Eu ions mediated by hopping paths exceeding
the cluster we consider are at least of the order t6(�E)−5.

We express the matrix elements of the effective
superexchange Hamiltonian in terms of the same quantities
as in section 2. The result is a finite polynomial in terms of
spin operators. To a good approximation the superexchange
Hamiltonian turns out as an xxz model:

hxxz = jx
(
σ1xσ2x + σ1yσ2y

) + jz σ1zσ2z. (26)

There are additional (multilinear, see below) parts of
the superexchange Hamiltonian, e.g., terms σ 2

1iσ
2
2i , whereas

Figure 4. Average coupling constant of nearest neighbours.

Table 3. Anisotropic coupling constants of nearest neighbours.

X jx (K) jz (K)

0.001 81 1091τ 4 + 1091(1 − τ 2)2 1094τ 4 + 1091(1 − τ 2)2

0.009 89 133τ 4 + 130(1 − τ 2)2 136τ 4 + 130(1 − τ 2)2

0.017 7 89τ 4 + 83(1 − τ 2)2 94τ 4 + 83(1 − τ 2)2

the tetragonal symmetry of the superexchange Hamiltonian is
exact due to the crystal symmetry. The hopping processes we
consider have got complicated selection rules. For instance,
exchange processes of fourth order in V are possible where the
z component of one Eu spin is changed from −3/2 to 7/2, i.e.,
these processes have the selection rule �Sz = 5. This is why
the exchange Hamiltonian is not bilinear in the spin operators
but multilinear. For a bilinear exchange Hamiltonian the
selection rule �Sz = ±1 is required. However, the exchange
Hamiltonian we obtain is bilinear to a good approximation.
The values of the coefficients of the neglected part of the
Hamiltonian depend on the choice of the parameter sets: less
than 10−3 jx , 5 × 10−2 jx , and 10−1 jx for X = 0.001 81,
0.009 89, and 0.0177, respectively.

The—antiferromagnetic—coupling constants are listed in
terms of approximate numbers in table 3. The precision of
these numbers decreases with increasing value of X as the
neglected parts of the Hamiltonian become more important.
The lower the values of X and τ , the more isotropic is the
xxz coupling. The contribution, which is proportional to t2

0 t2
2 ,

is negligible for every parameter set. Figure 4 shows the
coupling, which has a considerable strength in each case, in
terms of the spatial average j = (2 jx + jz)/3.

Next-nearest neighbours

The calculation of the coupling of next-nearest neighbours
(these are located within the EuP2 planes) is carried out using
almost the same formalism as for nearest neighbours. The only
difference is the single P2 molecule ion involved in this case.

The resulting superexchange Hamiltonian for next-nearest
neighbours is denoted by:

h′
xxz = j ′

x

(
σ1xσ2x + σ1yσ2y

) + j ′
z σ1zσ2z. (27)
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Table 4. Coupling constants of next-nearest neighbours.

X j ′
x (K) j ′

z (K)

0.001 81 273 273τ 4 + 273(1 − τ 2)2

0.009 89 33 32τ 4 + 34(1 − τ 2)2

0.017 7 22 21τ 4 + 23(1 − τ 2)2

The calculated coupling constants are listed in table 4.
In contrast to hxxz , now the xx part j ′

x of the coupling is
approximately independent of τ whereas the Ising part j ′

z is
lower than jz exactly by a factor of four.

Competing effects on the magnetic ordering temperature

As the value of the model parameter τ , the coupling between
different EuP2 planes and the effect of the indirect exchange
(mediated by delocalized conduction band electrons) on the
intraplanar spin couplings are not known, we cannot present a
quantitative calculation of the magnetic ordering temperature.
However, in the following we will argue why the considerable
value of 50 K for the ordering temperature is generic in the
framework of our model.

There are competing effects on the magnetic ordering
temperature of EuRh2P2. (i) There is a twofold frustration
of the magnetic interactions caused by the antiferromagnetic
next-nearest neighbour couplings in the EuP2 planes and by
the coupling between different EuP2 planes irrespective of
the sign of the Heisenberg coupling jinter between Eu ions
in different planes, see figure 5. The frustration tends to
decrease the magnetic ordering temperature [16]. (ii) On the
other hand, there may be effects that tend to enhance the
ordering temperature. Except for certain small values of τ ,
one of these effects is the single-ion anisotropy (described by
the parameter μ, see equation (24) and table 2), which may
have considerable strength compared to the superexchange
couplings and may be more relevant than the xxz anisotropies
of these couplings. The ordering temperature is enhanced
drastically, i.e., logarithmically by a single-ion anisotropy [17].
The unknown Heisenberg exchange coupling jinter or an
unknown dipolar interaction between different EuP2 planes
has—on the mean-field level—no effect on the ordering
temperature as a hypothetically given Neél order in one plane
would not cause a mean field on a Eu site in a neighbouring
plane. However, the unknown anisotropies of the interplanar
exchange and pseudodipolar couplings between neighbouring
planes tend to stabilize the magnetic order [18].

Ordering temperature of an isolated quasi-two-dimensional
EuP2 plane

Though quantitative estimates of various magnetic couplings
which may have effects on the magnetic ordering temperature
as discussed above are missing, we can present estimates for
that temperature according to the coupling in the quasi-two-
dimensional EuP2 planes. This can serve as the starting point
for a more comprehensive analysis in the future, in particular
including the interplanar couplings which are not known to
date.

Figure 5. The frustration of the Eu lattice, caused by
antiferromagnetic intraplanar Heisenberg couplings j . An example
of four antiferromagnetically ordered spins in a EuP2 plane is shown.
(i) There is a frustration caused by the antiferromagnetic next-nearest
neighbour couplings j ′

x and j ′
z within a EuP2 plane. (ii) A nearest

neighbour belonging to a different plane is geometrically frustrated
independently of the sign of jinter.

Reference [17] takes into account the isotropic Heisenberg
couplings j of nearest neighbour magnetic ions on a two-
dimensional square lattice as well as the single-ion anisotropies
μ, and estimates the magnetic ordering temperature based on
these two parameters for μ � j :

TN = 12 j
∣
∣ln|μ

j |
∣
∣ . (28)

This equation gives already considerable ordering
temperatures except for very narrow windows of our unknown
model parameter τ , namely TN > 200 K except for τ � 10−12,
0.13 � τ � 0.15 and 0.21 � τ � 0.22 for the model
parameter sets with X = 0.001 81, 0.009 89 and 0.0177,
respectively.

Altogether the discussion of the competing effects on
the ordering temperature and of the intraplanar estimate (28)
shows that the experimentally observed ordering temperature
of about 50 K is consistent with our calculations because
in this sense our model avoids the suppression of the
ordering temperature which is implied by intermediate-valent
models [3].

More on interplanar exchange couplings and geometrical
frustration

As mentioned above, the estimate (28) for the magnetic
ordering temperature of an isolated EuP2 plane can be the
starting point or leading-order term for a comprehensive
theoretical analysis of the ordering temperature of the three-
dimensional system EuRh2P2 which we suggest should be
done in the future. In particular, we expect corrections of

7
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that first estimate according to two effects, namely (A) the
intraplanar frustration according to the antiferromagnetic next-
nearest neighbour couplings and (B) the interplanar frustration
according to the coupling jinter, which is caused by the
hybridization between the EuP2 planes and the metallic Rh
planes and means an effective indirect exchange coupling
between the EuP2 planes.

One may guess that jinter is ferromagnetic because [9]
concludes that there are ferromagnetic couplings in the system
(see section 1 above) and the intraplanar couplings are
antiferromagnetic for nearest and next-nearest neighbouring
Eu ions according to our calculations. However, more detailed
estimates for the interplanar indirect exchange couplings
including their anisotropies are going to be the subject of future
theoretical work.

Once more is known about the interplanar exchange
it may be promising to analyse the geometrical frustration
effects on the magnetic ordering temperature. We are not
aware of any reference which has discussed the twofold
geometrical frustration of a tetragonal (or cubic) body-centred
lattice of magnetic ions which we have identified in EuRh2P2

with intraplanar next-nearest neighbour frustration. However,
there exist several references which develop methods going
beyond the estimate (28) and which may be useful for a
future theoretical analysis of the magnetic ordering mechanism
of EuRh2P2. These references analyse the low-temperature
properties of various frustrated geometries for macroscopic
lattices [19–22], in particular the two-dimensional square
lattice with crossings as we have in the EuP2 planes [19], and
investigate the possibilities of understanding frustrated systems
from the properties of their building blocks which consist of
small magnetic clusters [23–26]. The building blocks of the
Eu lattice in EuRh2P2 are pyramids with crossings in the basal
planes.

5. Summary

We have introduced a systematic interpretation of the
Eu valence shift and the magnetism of EuRh2P2 due to
covalent bonding which—in contrast to a hypothetically given
intermediate valence—is consistent with experiment. We have
presented a model for the covalence which predicts upper
bounds of the anisotropy of the Curie constants and which
characterizes the strength of the Eu single-ion anisotropies
and of the superexchange coupling between nearest and
next-nearest neighbouring Eu ions. Though a quantitative
calculation of the magnetic ordering temperature has not been
possible, we have argued why the experimentally observed
ordering temperature is generic, because for instance the
single-ion anisotropies might have considerable strength.

Measurements of the anisotropy of the Curie constants
could fix the last free parameter τ of the single-ion
anisotropy and superexchange model and determine the model
completely. Following that, measurements of the magnetic
structure and the magnetic excitations via neutron scattering

could make a description possible which also takes into
account indirect exchange between the Eu ions. (The
reader should be reminded that neutron scattering requires the
particularly expensive isotope Eu-153 because the standard
isotope Eu-151 absorbs neutrons too strongly [2].)

A complementary possibility to fix the parameter τ could
be a numerical tight-binding fit simulation. Together with an
experimental value of the anisotropy of the Curie constants,
this would also mean a further consistency check of our model
calculations. In order to obtain more quantitative estimates
for the magnetic ordering temperature, we also suggest further
theoretical work on the modelling of the interplanar indirect
exchange and the consequences of the twofold (intra- and
interplanar) geometrical frustration, which we have identified
in the system.

In these ways, there is the chance to understand compre-
hensively the magnetic ordering mechanism in EuRh2P2.
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[9] Schütte N 1997 Diploma Thesis Universität zu Köln
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